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On an initial boundary value problem involving
Beltrami—Moses fields in electromagnetic theory
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2 Department of Engineering Science and Mechanics, 227 Hammond Building, The
Pennsylvania State University, University Park, PA 16802-1401, U.S.A.

p
A
L

/

/ \\ \\

AL B

The so-called Harmuth ansatz consists of including autonomous magnetic sources in
the time-dependent Maxwell postulates. The Beltrami fields are eigenfunctions of the
curl operator, and have been used by Moses for propagation in infinite media.

These developments are of relatively recent provenances in electromagnetic
theory. We discuss an initial-boundary value problem (1Bve) within the framework
of a manifestly covariant electromagnetic formalism by using the Harmuth ansatz.
We also show how a covariant formulation of the Beltrami—Moses fields may be used
for solving electromagnetic 1BVPs.
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1. Introduction

Initial-boundary value problems (1BVes) appear not to have been discussed carefully
by the classical electromagnetic community. The standard electromagnetic 1BvPs are
usually explored with the dubious practice (Harmuth 1986; Barrett 1990) of ignoring
the magnetic current density ab initio and using direct and inverse Fourier
transforms. Harmuth (1986, 1990) and Barrett (1988) have given physical reasons for
doubting the standard practice; from the mathematical point of view, however, the
standard practice is dubious for the simple reason that boundary conditions may not
be divorced from the initial conditions (Hillion 1990, 1991a). Instead, what is now
called the Harmuth ansatz, and which has antecedents in early work on
electromagnetic fields (e.g. Becker 1982), should be utilized: briefly, the Harmuth
ansatz consists of including a magnetic current density in the time-dependent
Maxwell postulates for analytical purposes, the magnetic current density being set
equal to zero at the very end. We discuss here the Harmuth ansatz as it pertains to
Beltrami fields.
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2. Electromagnetic and Beltrami fields

— ‘ (@) Beltrami fields

§ P A Beltrami field b(x) is an eigenfunction of the curl

2 - VA b(x) = Ab(x), xeR® (1)
- 5 the proportionality constant A being an eigenvalue of the curl. In fluid mechanics,
T O Beltrami fields are specific solutions of the three-dimensional Euler (Navier—Stokes)
— o equations for incompressible flow without viscosity (with viscosity) such that the

vorticity is parallel to the velocity. Such a situation is seen to occur in nature as well
as in computer simulations of chaotic flows, and has been recently discussed by
McLaughlin & Pironneau (1991).
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236 P. Hillion and A. Lakhtakia

Beltrami fields also occur in static plasmas when the magnetic flux density aligns
itself with the current density. This situation was intensively studied in the past (e.g.
Van Kampen & Felderhof 1967), and has become the object of renewed study as well
(Mett & Tataronis 1989; Salingros 1990; Yoshida 1991a). A (static) Beltrami
magnetic field exerts no Lorentz force, for which reason it was introduced by Lust
& Schlute (1954) to allow magnetic fields and large currents to exist simultaneously
in stellar matter. The Lust—Schlute proposal was enthusiastically taken up by
Chandrasekhar (1956, 1957); since then it has seen extensive use in astrophysics as
well as magnetohydrodynamics, and reviews by Aly (1984) and by Zaghloul &
Barajas (1990) are suggested for the interested reader. Parenthetically, it is noted
that a proof of the impossibility (Parker 1958) of force-free magnetic fields has been
shown to be false recently (Zaghloul 1989).

The emphasis in this communication being on electromagnetism, one notes at once
that the form of the Maxwell postulates suggests the electromagnetic field can be
defined in terms of Beltrami fields. Some 30 years ago, Rumsey (1961) had proposed
a new way of solving the Maxwell postulates in free space: unbeknown to him:
however, he had been anticipated considerably earlier by Silberstein (1907), and even
by Fresnel (1822) in a manner of speaking. These proposals, as well as their progeny
(Varadan et al. 1987) apply only to monochromatic fields giving rise to what is known
as circular polarization (Chen 1983) in the microwave and the optics literatures.
Moreover, these ideas have proven to be of great importance in studying natural
optically active media (Lakhtakia 1991a,b) and bi-isotropic media (Sihvola &
Lindell 1991; Lakhtakia & Diamond 1991).

(b) Beltrami—Moses fields

But the breakthrough for the use of the Beltrami fields in electromagnetism came
from Moses (1971) who introduced a particular class of Beltrami fields with the
following properties.

They are three-dimensional complex vectors y(x,p;A) depending on x and on a
vector p in the momentum space, and are eigenfunctions of the curl operator

VA x(x,p;A) = Alpl x(x,p; A), (2)

with the three eigenvalues A =0,+1. They satisfy the orthogonality and
completeness relations

fdxx*(x,p;?t)‘x(x,p’;ﬂ) =0(p—p') oy (3a)

> f Ap xF (6.1 A) (! p5 A) = B —x') 8y, (3)
A

where yx; denote the cartesian components of ¥ and the asterisk denotes the complex
conjugate. Moreover, one has the relations

Vo x(x,p;A) = —i(2m) 5 |p|e?* 4, (4a)
X¥(x,p;A) = —e P x(x,p; A), (4b)

where ¢ is the polar angle of p.
Explicitly the Beltrami-Moses fields are given as

x2(x,7r:0) = (2m)Fe¥p (5a)
Phil. Trans. R. Soc. Lond. A (1993)
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Beltrami—Moses fields in electromagnetic theory 237
for A =0, and o
P1(P1+iAD,)
14,
A 3 ry A A . A
2(x,p; ) = ——=@2n)ze?* | Py(By+irpy) o ] (5b)
V2 o Y
1+ P,

for A = +1, with § = p/|p| and Py +iAP,

P = |pl (sinf cos ¢, sin Osin @, cos 0) = |p| (Py, Py, Ps)-
Recently Moses & Prosser (1990) have used the previous formalism to examine
electromagnetic fields in an infinite medium of constant conductivity but they have
not considered initial-boundary value problems.

(¢) Three-dimensional complex formalism for electromagnetism

In the Heaviside—Lorentz conceptualization of electromagnetic fields, autonomous
magnetic sources are not considered. However, there is no particular harm in
introducing them into the Maxwell postulates, if only to obtain symmetric forms
(Barrett 1990; Lakhtakia 1992). To begin with, we have the symmetrized Maxwell

equations V-E(x,1) = 6 pe(x,1), V- H(x,) = — 15 (%, 1), (6a, b)

VA E(x,t) = —pu,0, H(x,t)+ K(x,t), VA H(x,t)=¢,0,E(x,t)+J(x,t), (6¢,d)
where we have treated E, H as the basic electromagnetic fields in free space; u, and
€, are, respectively, the permeability and the permittivity of free space; while 0, =
0/9,. We let the electric current and charge densities be denoted by J and p,, and the

autonomous magnetic current and charge densities are denoted by K and p,,. The
continuity equations

V- J(x,8)+0,p,(x,8) =0, V-K(x,t)+0;p,(x,t) =0, (7a, b)

are also to be noted.

Equations (6a—d) have been so stated as to be Lorentz-covariant. We note,
however, that frequently in the electrical engineering literature (e.g. Harrington
1961), one has instead of (65, ¢)

VAE=—u,0,H—K, V-H=p'p,;

but one cannot have Lorentz-covariant equations then.

Let us now use a formulation of electromagnetism covariant under the complex
orthogonal group O(3, €') isomorphic to the connected component of the Lorentz group.
Such a manifestly covariant formulation has the distinct advantage of being more
compact and, as we shall see, is suited well to Beltrami fields.

We start with the electromagnetic field tensor F;w w,v=0,1,2,3, yielding the self-
dual tensor (Corson 1954)

F/w = va+%i€pvaﬂFaﬂ> i= \/ - 19 (8)

where ¢,,,, is the 4D-permutation tensor sometimes called the Levi-Civita anti-

symmetrical tensor. F‘W has three independent components forming a complex vector
Q defined as (Hillion 1991b)

Q(x,t) = Ve, E(x,t)+iv/ g H(x,t). 9)
After introducing the complex vector W
Wix,t) = iV J(x,0)+ v/ ¢, K(x,1), (10)

Phil. Trans. R. Soc. Lond. A (1993)
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238 P. Hillion and A. Lakhtakia
and the complex charge scalar R
R(x,t) = ey3pp(x, 1) + ity (X, 1), (11)
the Maxwell equations (6) take the simple form
VA Q(x,8) = i(e )70, Q(x, 8) + W(x, 1), (12a)
V- Q(x, 1) = —i(ey ptg) R(X,1). (120)

One checks easily that equations (12) are covariant under the orthogonal group
0(3,0), and from these equations the continuity condition

V- Wix,t)+0,R(x,t) =0 (13)
is easily deduced.
We may now express the complex vectors Q and W in terms of the Beltrami-Moses
fields by a Fourier-like transform

Q(x,t) =X fx(x,p;)l) q(p.t;A)dp, (14a)
A

Wi(x,t) = ZJX(&P;/\)W(IM;A)dP, (14b)
A

the functions ¢ and w being the Beltrami-Moses transforms of Q and W. Similarly
for the charge scalar R, we use the ordinary Fourier transform

R(x,t) = (2n)_%feip”‘r(p,t) dp. (15)

Substituting (14), (15) into the Maxwell equations (12) yields ordinary differential
equations (easier to solve) for the weight functions ¢, w, . In particular, from (12a)
and (14a, b) we get

Aplg(p,t;A) = icg 0, q(p, t; A) +w(p,t; A), (16)

where ¢, = (€, #t9) % If w is assumed to be known, (16) has the solution
q(p,t;A) = ic, e‘“%'p't{ Je“%l"”w(p, b /\)dt+const.}. (17)

If we substitute (14a) and (15) into (125), and take (4a) into account, we get
q(p.t;0) = (ico/Ipl) r(p, 1). (18)

These relations, together with the complex conjugate ones, allow to solve any
problem in a homogeneous infinite medium. As stated previously, Moses & Prosser
(1991) have recently used these Beltrami fields; but because their formulation of
electromagnetism is not manifestly covariant, they are led to more intricate
expressions.

Remark 1. Because of the completeness and orthogonality conditions (3), the
expansion coefficients ¢ and w can be obtained from

qp.t;A) = fx*(x,p;/\;/\)'Q(x, t)dx,

w(p,t;A) = Jx*(x,p;/\)- Wi(x,t)dx.

Phil. Trans. R. Soc. Lond. A (1993)
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Beltrami—Moses fields in electromagnetic theory 239

3. Harmuth’s ansatz revisited
(@) Harmuth’s ansatz

We begin with a homogeneous medium without electric and magnetic charges, and
having a permeability scalar ¢ and a permittivity scalar 4 (Harmuth 1990; Moses &
Prosser 1990). Only currents carried by charged particles are considered (Becker
1982). The Maxwell equations satisfied under these considerations are

VAH=¢),E+J, VAE=—ud H+K, (19a, b)
V-E=0, V-H=0. (19¢, d)

The electric and the magnetic current densities, J and K respectively, are intrinsic to
the medium; these current densities satisfy the equations

J+7,0,J—0E=0, K+7,0,K+sH=0, (204, b)

where o is the electric conductivity, s is the magnetic conductivity, while 7, and 7,
are two time constants. We will have ¢, u, o, 7,, 7,,, and s real and positive in the
sequel.
Let us now write (19) and (20) in a manifestly covariant form as in §2b. This is
possible only if we have
Te =Ty =T, €S= UO. (21a, d)

Then (20a, b) become the Harmuth—Hussain equations (1991) and we get
7 =mo/Ne* =m/§, (22)

where m is the particle mass and e is the particle charge, N is the number of charge
carriers in a unit volume and £, is the Stokes friction coefficient.
Assuming that the conditions (214, b) are fulfilled and using the complex fields of
§2¢, (19) and (20) become
VA Q(x,t) =ind, Q(x,t)+ W(x,t), 7= (eu), (23a)
Wi(x,t)+70, W(x,t) = iaQ(x,1), o= o(u/e), (23b)
where Q = v/eE+iv/uH and W = 1/eK+i+/puJ now. Eliminating W or Q between
these last two equations leads to

()i (2)-v o (Q)ria(2)-v (20 @

If we now assume the representations (14a,b) of Q and W in terms of the
Beltrami-Moses fields, (23a, b) give for the weight functions the ordinary differential
equations

Alplg(p,t;2) =in0,q(p,t; ) +w(p,t;A), (25a)
wp,t;A)+70,w(p,t;A) =iaq(p,t;A), (250)
whence inT 02 (Z))+ (in—Alpl )0, (i>+ (ie— Alp]) (37) =0. (26)

Let us remark that since p, = p,, = 0 here, according to (18) ¢(p, O t) = 0. Hence,
we only need A = +1 here. It is also easy to prove that w(p,¢;0) = 0; indeed from
(25b) we get

w(p,t;0) = wp)e ",

Phil. Trans. R. Soc. Lond. A (1993)
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and substituting this last result into (25a) gives

q(p.1:0) = 0= (i/p)wip)re™l,
so that w(p) = 0.
(b) Planar TEM waves

Let us now consider planar TEmM waves propagating in the z direction so that

KE,=H,={,=0, (27a)
Hy ==/ (6/) By, Hy = (c/p) B, (270)

Then, we deduce from (24)
ip(1+70,)0, @, +ia @), = —(14+70,)0,Q,, (28a)
in(1+70,)0, 6, +ic @, = (1+70,)0,@Q,, (28h)

where 0, = 0/0,. On using the fields

Q= Q,TiQ,. (29)

Kquations (28a, b) become
9Ol Q. +50,Q,—(1+70,)0,Q, +a), =0, (30a)
907 Q. +90,Q +(1+70,)0,Q_+a_ = 0. (30b)

Of course, one has similar equations for W,, W, W,, W_.

Let us now consider the Beltrami-Moses fields. Since ¢(p,¢;0) = 0 already the
condition ¢, = 0 implies y,(-,, 1) =0. Then we must have p, = p, =0 as per
(6,); hence y(-, + 1) becomes

1 +1
x(x,p; 1) = NC (275)%8"7“( (1) )3(271)3(7/2), (31)

for the present purposes. After using (14a) we get, therefore,

Qe = O [ty 1)t~ 11 (320)

0ty = O [ometytp 1) ot 6~ 110, (320)

leading to Q. (z,8) = (4n3)"%Jei-”azq(j;3, t; —1)dps,, (33a)
Qa0 = () [ 1)y (330)

We note that ¢(p,,t; + 1) is a reduced notation for ¢(p, Z,¢; +1). Now, one has just to
solve the differential equation (26) for obtaining ¢(p,,¢; A) and we get

APy 13 A) = A(py, A) e+ Pr V4 B(py, 1) %P2Vl A = £ 1, (34a)
: . 1 i i ? —4a ,
with 2a.,(ps, A) = — (:r ~+;7-Ap3),_,—t / It(;?;/lpg) —»T--], (340)

Phil. Trans. B. Soc. Lond. A (1993)
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Beltrami—Moses fields in electromagnetic theory 241

while 4 and B are functions of p, and A to be determined by the initial-boundary
conditions. But because of the relations (27b) and according to the definition of the
function @, one has

Q+(.’E, t) = 07 (35)
which requires, according to (33a) and (34a),
A(ps, —1) = B(ps, —1) = 0. (35)

Thus from now on, we concentrate on ¢_ and rename it ¢ in the following sections.

Remark 2. Of course, one has similar results for W,, W, W,, W_, with w(p,, t; Q) still
given by (34a) but with some functions C' and D that are different from 4 and B.

Remark 3. Q,, Q_, Q,, are in fact the components ¢}, ¢3, ¢; of a traceless second
rank spinor ¢i(r,s =1,2;¢l+ @2 =0). It has been shown (Hillion 1991) that the
spinor formalism of electromagnetism covariant under the group SL(2, C) of the 2 x 2
unimodular matrices isomorphic to the connex component of the Lorentz group is a
powerful tool to solve the problems of electromagnetic wave propagation. The
Beltrami-Moses spinors are discussed elsewhere (Hillion 1992).

(¢) Harmuth’s ansatz for TEM waves
(i) Statement of the problem
So we consider the field Q(z,t) that satisfies (30b) rewritten as

©0,4+1/7)(0,Q+¢0, Q)+ (ac/T)Q =0, c=n"", (36)
in the domain z > 0,¢ > 0 with the initial boundary conditions
QUO,1) = V2h(t),t =2 0; Q(0)=+/2f(),220; 0,Q(z0)=+v29(),z>0, (37)

where the factor ++/2 is put for convenience.
From (33b) and (34b), we obtain the Beltrami-Moses representation of the field

Q(z,t) as

Q1) = (4”3)_%Jeipaz(A (ps) €72+ B(ps) e~ 2") dp;, (38)

with 2a, = —(1/7+icp,) £ ((1/7—icpy)® —4ac/7) )2 (38")
Then, the initial boundary conditions become

ht) = (2ﬂ)"%f [A(py) €%+ + B(p,) -] dpy, (39a)

fz) = (2ﬂ)_%Jeipﬂz(A(Pa)JrB(Ps))dPs, (390)

g(z) = (2n)'%Je1paz[a+(p3)A(p3) +a_(ps) B(ps)] dps. (39¢)

Since one has three conditions for only two unknowns (i.e. 4(p;) and B(py)) it is clear
that the initial-boundary conditions cannot be chosen arbitrarily and one obtains
easily the relations

h(0) = f(0), #'(0) = ¢(0), (40a, b)
Phil. Trans. R. Soc. Lond. A (1993)
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242 P. Hillion and A. Lakhtakia
and nth”(0)+nh’'(0) — 79 (0) —f'(0) + h(0) = 0, (40c¢)
where the prime denotes differentiation with respect to the argument.
(ii) Lirst problem (7 00)

It is interesting, first, to understand the nature of the difficulties to be encountered
with the kind of initial-boundary value problem just defined and, secondly, to see

how the Beltrami—Moses transform works. So we begin by considering the simple
partial differential equation

RQ(z,t)+¢0,0,Q(z,t) = 0, (41)

obtained by letting 7— co in (36).
Since the characteristics of (41) are the lines

z = const., z—ct = const., (42)
the general solution of (41) must be
Q(z,1) = ¢(z) +y(z—ct), (43)
where ¢ and ¥ are arbitrary functions with continuous partial derivatives.
Let us now consider the initial boundary value problem with the data (37), that
is,
Q0,1) = V2h(1),1 2 0; Q(z,0) = V2f(2),220; 0,Q(2,0) = v/29(2),2 20, (44)
satisfying the conditions
r0) = f(0), 4'(0) =g(0), A"(0)+cg’(0)=0. (447)

Taking (43) into account, it is easy to prove that the solution of the initial boundary
value problem (41), (44) is

f(z)+% J‘:_ct g(§)dg, O<ct<z, 45)

h(t—z/c), 0<z<et.

Q(Z, t) = V2

Let us now use the Beltrami-Moses solution (38). For 7+ 00, one deduces from

(34D)

a, =—ipsct, a_=0, (46)
so that the Beltrami—-Moses solution (38) becomes
+ 00
Q) = <4n3>‘%f e'P0%[ A (py) €770 + B(pg) ] dppy, (47)
with from the initial boundary conditions (44)
+00
h(t) = (275)_7f (A(py) 7172 + B(p,)) dpy, (48a)
s +00
fz) = (2”)—§f e'?%(A(ps) +B(ps)) dps, (480)
. +00 . .
9(z) = (275)'ff —ip, e'73%A(ps) dp,. (48¢)

Phil. Trans. R. Soc. Lond. A (1993)
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Beltrami—-Moses fields in electromagnetic theory 243
We deduce at once from (48b, ¢) for t =0 and z > 0
0 z
Apy) = —<2n>~%f dze—“’ﬁf Lyae, (494)
0

(3

B(p,) = (2n)‘%f dze_ipa"(f(z)+%f
Substituting (49a, b) into (

Qz

g(8) dg). (498)

gives

47
[ [T apemen [Co@ag

+nb2 [ [ apemen (e [ i)

=—\/2J dz’ 8(2’ —(z—ct))1 Jz g(§)dg

+\/2'[ dz’ 6(z"—2) (f(z )+% Jz g(&) dg). (50)

Now we have

—J dz’ 8(z"— (z—ct)) J £ dE = J for z—ect >0, (61a)
0

dez’ﬁ(z’—z)(f(z’)+ijz (g)dg> fz)+ ZJ g(§)dg for z>0. (51b)

Therefore, the substitution of (51 a, b) into (50) yields the solution (45) in the domain
0 < ct < z. If we substitute (49a, b) into the right-hand side of (48a), we get zero
identically as we have yet not utilized the data A(t).

From (48a) we get for z=0 and ¢t > 0

A(py) = (2m) Jw e h(t)di, B(ps) = 0, (52)

0

by following a similar procedure. Then, substituting (514, b) into (46) gives
¢ © [+
Q(z,t) = \;ZJ J e PsEH =R (1) dp, di’,
0 J—o

=4/2 JOO Met' — (ct—2)) h(t')dt’ = h(t—2z/c) for ct—2z>0, (63)

which is the solution (45) in the interval 0 <z < ct.

It is important to note the role played by the characteristic z—ct = 0 in this kind
of initial boundary value problem. The solution takes two different forms in the
domains z—ct > 0 and z—ct < 0 and is discontinuous across the characteristic. In
passing, we also remark that we would have the same solution in the domain z < 0,
t < 0 but there are no possible solutions in the domains z > 0,¢ <0 and 2 < 0,¢ > 0.

(iii) Second problem (o = 0)

Let us now look for the solutions of equation (36) assuming that a = 0 so that (36)

reduces to 0,4 1/7)(0,Q(2,t) +¢0,Q(z,t) = 0. (54)
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In terms of two arbitrary functions ¢,y with continuous partial derivatives the
general solution of (54) is given by

Q) = e [ g e pe—en, (53)

and reduces to (43) for 7— oo. Using (55), one obtains

2

Q(z, t) = \/2 e‘t/7f(z) +%e(zlct)/07 \/QJ

et [9(5) +%f(€)] dg§, 0<ct<z,
= \/2h(t—z/c), 0<z<ect, (56)

as solution of (54) for the initial boundary value problem with the data (37).
We now discuss, as for the case of 7+ 00, the Beltrami—Moses transform, with the

a,(p;) given by

a(ps) = —icps, a_(ps) = —171, (57)
as o = 0. Taking (57) into account, the Beltrami-Moses transform becomes
+00
Q(z,1) = (47‘3)"# e'?s%(A(py) €' + B(py) e717) dpy, (58)
with the initial boundary data
+00
h(t) = (2”)_%f (A(ps) €772 +B(p,) e”*'") dps, =0, (594)
s + 00 .
flz) = (QW)WEJ 7% (A (ps) + B(ps)) dps, 220, (590)
3 -+ 00 . . 1
9(z) = — (2ﬁ)‘§f ewf"z(lb‘i’sA(i’s) +;B(703)) dps, z220. (59¢)

Assuming B(p;) = 0, we deduce from (59¢a) that

A(py) = (2m) F e'Palh(t) dt, (60)

0

and substituting (60) into (58) gives

+o0 0
Q(z, t) = \72/1?2 f dpS eip3(2+0t/-ct) f h(t/) dt/,

—00 0
= \/2-[ o(ct’ — (ct—2)) h(t')dt = +/2h(t—2/c), ct—2z>0, (61)
0
which agrees with the solution (56). Now from (595, ¢) we deduce
+ o
J@)+719(z) = (QR)_EJ e'P*(1—icp, 7) A (ps) dps, (62a)
s *+00 .
orf’(2) +19(2) = — (2m) "} J o751 —icpy 7) B(py) dps, (620)
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leading to (1—icp,7)A(py) = (2m) fo e P2 f(z+71g(2)) dz, (63a)
0 oo
(1 —icpy 7) B(ps) = — (2m) % L e" P2 (erf’ (2) +7g(2) da. (63b)
But from (58) we have
Qz,t)—c10,Q(z,t) = (4m3) fm e'Ps?[(1 —icTpy) A(py) €717

+ (1 —icrpy) B(ps) ™" dp,,  (64)
and substituting (63) into (64) gives

e =er0, Q) = 32 [+ [ gy
\2/75 ‘”’fo dz (erf(2') + 79(2")) ﬁr: dp, eiP:=2);
that is
Qz,8)—c10,Q(2,t) = /2[ flz—ct) +1g(2—ct) —Te (cf "(2) +¢(2))]. (65)

The integration of this last differential equation is straightforward and one obtains
complete agreement with the solution (56), as expected.

(iv) The general case
Let us now consider the general equation (36) with « # 0. Since the function

§(z.t) = Q(z,t) —e™* (66)

satisfies the partial differential equation (54), one obtains without any further
calculations, but only by using (56) and (66), the solution of (36) for the initial-
boundary data (37) as

Qz,t) = e™*(1—e"") ++/2e7f(z) +%e‘z"“‘” « f e ¥ ”[V 29(8)

+;(\/2f(§)—e‘“5);|d§, for O0<ct<z, (67a)

Qz,t) =e % —0(t—2z/c)++/2h(t—2/c), 0<z<ct. (67b)

For o # 0, the Beltrami-Moses transform is very intricate, but fortunately we just
need the Beltrami-Moses transform of the function S(z,¢) discussed above.

4. Conclusion

Let us conclude by three remarks on the Beltrami-Moses fields, the solutions of the
hyperbolic partial differential equation (36) and on the Harmuth ansatz.

1. As stated in §2a, the Beltrami-Moses fields were previously used in an infinite
medium. On the other hand we are concerned in this paper with an initial-boundary
value problem with data specified on z = 0,t = 0, and solution in z > 0, > 0. Insofar
as the two-dimensional space-time differential equation (36) is concerned, the
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Beltrami—Moses transform does not appear as powerful as expected. This may be for
two reasons.

(i) Because (36) is a very simple partial differential equation, it is easy to guess
that its general solution depends on two functions ¢(z) and yr(z—ct). One can easily
match the sum of ¢ and ¥ to the prescribed initial-boundary data.

(ii) Except when o = 0 and the Beltrami—Moses transform reduces to a Fourier
transform, it is not transparently obvious how to obtain the functions 4(p,) and
B(p,) of (38) from the initial-boundary data.

Of course, the Beltrami—Moses transform continues to be of interest for the partial
differential equations whose general solutions are difficult to guess.

2. The data for the initial-boundary value problem discussed here is given on a
non space-like surface (the normal to a space-like surface is everywhere inside the
light cone), which feature leads to great mathematical difficulties (Courant & Hilbert
1972, p. 754) concerning the existence and the properties of the solutions.
Fortunately, the two-dimensional space-time hyperbolic equation is simple enough :
available are the conditions (here the relations (40)) that the initial-boundary data
must satisfy in order that a solution exists.

This solution has the important property of being discontinuous with the
discontinuity propagating along the characteristic z—ct = 0, which is a well-known
result (Courant & Hilbert 1962). Above the characteristic, the solution is the
‘retarded’ excitation A(t—z/c) in agreement with the fact that no field can travel
with a velocity greater than c. Below the characteristic the solution depends on the
boundary data f(z) and g(z).

3. The final point concerns the autonomous magnetic charge and current densities
and the Harmuth ansatz. We have noted in §2¢ that K and p,, are necessary for a
Lorentz-covariant formulation of electromagnetic fields, and are also strongly
suggested by the chiral invariance of the Maxwell postulates (Zwanziger 1968 ; Tiwari
1990). Whereas a non-zero 0, p,, implies a K whose divergence is not zero, there can
exist purely solenoidal K (i.e. VK = 0) which cannot be connected to time-varying
magnetic charges densities.

It is the divergenceless K (and J) that are investigated under the Harmuth ansatz
in §3. This is quite clear from the defining equation (205), particularly if we bear in
mind that the propagation of planar TEM waves is considered. In a more general
medium, for which 7, = 7, = 7, but s/ # u/¢, the temporal variation of the electric
field will give rise to a transverse magnetic field, and vice versa. Therefore, in that
case, we must have both the electric and the magnetic fields associated with the
excited planar TEM wave to be identically zero for ¢ < 0 for the 1BVP to be solved in
z2>0,t>0.

But (19a-d) and (20a, b) can be written in a manifestly covariant form if and only
if (21a) and (215) hold; this case is precisely what has been investigated in §3 and has
constituted the theme of this paper. The scalar field @_ (called simply @ from §3¢
onwards) contains a definite proportion of electric and magnetic fields, fixed for all
time and everywhere. Hence, to have @_(z=0,f) = 0 for { <0 is not necessary;
indeed, such a condition is an unwarranted overspecification in light of the previous
paragraph.
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